WORKSHEET 7

Date: 10/25/2022

Name:

Definitions and statements

DEFINITION 1. Let $a, b \in \mathbb{Z}$ where *a* is non-zero. We say *a* divides *b* if

 $b = a \cdot c$ for some integer c.

When *a* divides *b*, we write a|b.

THEOREM 1 (The Division Algorithm). *For positive integers a and b, there exists unique integers q and r such that*

$$b = aq + r$$
 where $0 \le r < a$.

DEFINITION 2. Let *n* be a positive integer. For $a, b \in \mathbb{Z}$, if *n* divides a - b, we say that *a* is **congruent to** *b* **modulo** *n*. written as

 $a \equiv b \pmod{n}$

PROPOSITION 2. Let *n*, *k* be positive integers, and $a, b \in \mathbb{Z}$. If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$.

Practice Problems

- 1. Label each of the following *true* or *false*, and justify your answer.
 - (a) 8|0.
 - (b) a|b and $b|c \Rightarrow a|c$.
 - (c) a|b and $a|c \Rightarrow a|bc$.
 - (d) $a|b \Rightarrow -a|b$.
 - (e) $a|bc \Rightarrow b|c \text{ or } c|a$.

- 2. Let a and b be non zero integers. Prove the following statements.
 - (a) If a|b and b|a, then $a = \pm b$.
 - (b) If a|b, then $|a| \le |b|$.

3. Assume *n* is a non negative integer. Prove 4|(n-2)(n-1)n(n+1).

Hint: Don't use induction here.

- 4. Find each congruence. Remember we are asking what is $r \equiv a \pmod{n}$ where $0 \le r < n$.
 - (a) What is 16 mod 12?
 - (b) What is 51 mod 2?
 - (c) What is $2^5 \mod 41$?
 - (d) What is -9 mod 41?
 - (e) Show $41|(2^{20}-1)|$

- 5. Suppose a, b, c, d are integers with a and c different from zero. Prove that if a|b and c|d, then ac|(ad + bc).
 - (a) First, what does it mean for *a* to divide *b*, and *c* to divide *d*?
 - (b) Next, what do you want to show? i.e. what does it mean for ac|(ad+bc)?
 - (c) Lastly, give your proof of the statement.