Worksheet 7

Date: 10/25/2022
Name:

Definitions and statements

DEFINITION 1. Let $a, b \in \mathbb{Z}$ where a is non-zero. We say a divides b if

$$
b=a \cdot c \text { for some integer } c .
$$

When a divides b, we write $a \mid b$.
THEOREM 1 (The Division Algorithm). For positive integers a and b, there exists unique integers q and r such that

$$
b=a q+r \text { where } 0 \leq r<a .
$$

DEFINITION 2. Let n be a positive integer. For $a, b \in \mathbb{Z}$, if n divides $a-b$, we say that a is congruent to b modulo n. written as

$$
a \equiv b \quad(\bmod n)
$$

PROPOSITION 2. Let n, k be positive integers, and $a, b \in \mathbb{Z}$. If $a \equiv b(\bmod n)$, then $a^{k} \equiv b^{k}(\bmod n)$.

Practice Problems

1. Label each of the following true or false, and justify your answer.
(a) $8 \mid 0$.
(b) $a \mid b$ and $b|c \Rightarrow a| c$.
(c) $a \mid b$ and $a|c \Rightarrow a| b c$.
(d) $a|b \Rightarrow-a| b$.
(e) $a|b c \Rightarrow b| c$ or $c \mid a$.
2. Let a and b be non zero integers. Prove the following statements.
(a) If $a \mid b$ and $b \mid a$, then $a= \pm b$.
(b) If $a \mid b$, then $|a| \leq|b|$.
3. Assume n is a non negative integer. Prove $4 \mid(n-2)(n-1) n(n+1)$.

Hint: Don't use induction here.
4. Find each congruence. Remember we are asking what is $r \equiv a(\bmod n)$ where $0 \leq r<n$.
(a) What is $16 \bmod 12$?
(b) What is $51 \bmod 2$?
(c) What is $2^{5} \bmod 41$?
(d) What is $-9 \bmod 41$?
(e) Show $41 \mid\left(2^{20}-1\right)$
5. Suppose a, b, c, d are integers with a and c different from zero. Prove that if $a \mid b$ and $c \mid d$, then $a c \mid(a d+b c)$.
(a) First, what does it mean for a to divide b, and c to divide d ?
(b) Next, what do you want to show? i.e. what does it mean for $a c \mid(a d+b c)$?
(c) Lastly, give your proof of the statement.

